Abelianisation and differential structures

Sacha Ikonicoff

joint with JS Lemay and Tim Van der Linden

July 12th, 2024

 \mathbf{y} of \mathbf{B} \mathbf{y} .

∍

 QQ

Sacha Ikonicoff joint with JS Lemay and Tim Van der Linden **[Abelianisation and differential structures](#page-26-0)**

Cartesian Differential Categories : motivation

Sacha Ikonicoff joint with JS Lemay and Tim Van der Linden **[Abelianisation and differential structures](#page-0-0)**

검사 예정 HTT

È.

Cartesian Differential Categories : motivation

 $f \in \mathrm{Smooth}(\mathbb{R}^n, \mathbb{R}^m)$ $(f_1,\ldots,f_m)\in\mathrm{Smooth}(\mathbb{R}^n,\mathbb{R})^{\times m}$ $Df =$ $\sqrt{ }$ $\overline{ }$ $\frac{\partial f_1}{\partial x_1} \quad \cdots \quad \frac{\partial f_1}{\partial x_n}$
: $\frac{\partial f_m}{\partial x_1}$... $\frac{\partial f_m}{\partial x_n}$ \setminus $\Big\}$

米酒 お米酒 あい 海上

Cartesian Differential Categories : motivation

 $f \in \mathrm{Smooth}(\mathbb{R}^n, \mathbb{R}^m)$ $(f_1,\ldots,f_m)\in\mathrm{Smooth}(\mathbb{R}^n,\mathbb{R})^{\times m}$ $Df =$ $\sqrt{ }$ $\overline{ }$ $\frac{\partial f_1}{\partial x_1} \quad \cdots \quad \frac{\partial f_1}{\partial x_n}$
: $\frac{\partial f_m}{\partial x_1}$... $\frac{\partial f_m}{\partial x_m}$ x_1 xn \setminus $\Big\}$

 $Df: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^m$ $(\vec{x}, \vec{y}) \rightarrow Df(\vec{x}, \vec{y}) := D_{\vec{x}} f(\vec{y}) =$ $\sqrt{ }$ $\overline{}$ $\frac{\partial f_1}{\partial x_1}(\vec{x})$... $\frac{\partial f_1}{\partial x_n}(\vec{x})$.
.
. $\frac{\partial f_m}{\partial x_1}(\vec{x}) \quad \ldots \quad \frac{\partial f_m}{\partial x_n}(\vec{x})$ \setminus $\vert \cdot$ $\sqrt{ }$ $\left\lfloor \right\rfloor$ y_1 . . . yn \setminus $\Big\}$

メスラメスラメンラー

Definition (Blute, Cockett, Seely, '09)

A left additive category is a category X where for all objects A, B , $X(A, B)$ is a commutative monoid and :

$$
(f+g)\circ h=f\circ h+g\circ h,\qquad 0\circ f=0.
$$

A morphism f in X is **linear** if, moreover :

$$
f\circ (g+h)=f\circ g+f\circ h,\qquad f\circ 0=0.
$$

Definition (Blute, Cockett, Seely, '09)

A Cartesian left additive category is a left additive category equipped with all finite product and where projection maps are linear.

k E x k E x

 Ω

Definition (Blute, Cockett, Seely, '09)

A Cartesian Differential Category is a Cartesian left additive category X equipped with a **differential combinator** of the form :

> $f : A \rightarrow B$ $\overline{Df \cdot A \times A \rightarrow B}$

Satisfying [CD.1] to [CD.7].

Ex : Smooth.

ミメスミメー

 Ω

Cartesian Differential Categories : axioms

 $[CD.1]$: D is linear in f, $[CD.2]$: Df is linear in \vec{y} , $[CD.3] : D(\text{Id}_X)(\vec{x},-) = \text{Id}_X,$ $D(\pi_i)(\vec{x}, -) = \pi_i$ $A \times B$ π_1 μ π_2 A B $B_1 \xleftarrow{f} A \xrightarrow{g} B_2$ $\overline{\langle f, g \rangle : A \to B_1 \times B_2}$ $[CD.4] : D(\langle f, g \rangle) = \langle Df, Dg \rangle$ $[CD.5]$: $D(g \circ f)(\vec{x}, \vec{y}) = Dg(f(\vec{x}), Df(\vec{x}, \vec{y}))$ (Chain Rule!) $[CD.6] : D(Df)(\vec{x}, 0, 0, \vec{y}) = Df(\vec{x}, \vec{y})$ $[CD.7] : D(Df)(\vec{x}, \vec{y}, \vec{z}, \vec{t}) = D(Df)(\vec{x}, \vec{z}, \vec{y}, \vec{t})$ (Mixed Partial derivatives commute)

化重氮 化重氮化

 QQ

œ.

Proposition (Cockett, Cruttwell, '14)

If X is a Cartesian differential category, then there is a tangent structure on X such that :

 $T(X) = X \times X$, $T(f)(x, y) = (f(x), Df(x, y)),$ $p_X(x, y) = x$, $s_X(x, y, z) = (x, y + z)$, $z_X(x) = (x, 0)$, $l_X(x, y) = (x, 0, 0, y),$ $c_X(x, y, z, t) = (x, z, y, t)$

EXTERNITY OF SACK

Proposition (Cockett, Cruttwell, '14)

If X is a Cartesian differential category, then there is a tangent structure on X such that :

 $T(X) = X \times X$, $T(f)(x, y) = (f(x), Df(x, y)),$ $p_X(x, y) = x$, $s_X(x, y, z) = (x, y + z)$, $z_X(x) = (x, 0)$, $l_{x}(x, y) = (x, 0, 0, y),$ $c_{x}(x, y, z, t) = (x, z, y, t)$

Definition (Cockett, Cruttwell, '18)

A differential object in a tangent category X is an object X such that :

 $TX \cong X \times X$

4 F + E + + E + 1 + 0 Q O

Differential objects in X form a category Diff_{X} .

Proposition (Cockett, Cruttwell, '18)

 $\text{Diff}_{\mathbb{X}}$ comes naturally equipped with a CDC structure where :

 $f : A \rightarrow B$

化重新润滑脂剂

 2990

∍

Theorem (I., Lemay, V.d.Linden)

There is a tangent structure on Grp such that :

- $T: \text{Grp} \to \text{Grp}$ $G \mapsto G \times \text{Ab}(G)$ $f \mapsto (f, \text{Ab}(f)),$
- $p_G : T(G) \to G$ $(g, [h]) \mapsto g$
- $s_G : T_2(G) \to T(G)$ $(g, [h_1], [h_2]) \mapsto (g, [h_1] + [h_2]),$

 $z_G : G \to T(G)$ $g \mapsto (g, 0),$

 $l_G:\, \mathcal{T}(G)\rightarrow\, \mathcal{T}^2$ $(g, [h]) \mapsto (g, 0, 0, [h]),$

 $c_G : \mathcal{T}^2(\mathcal{G}) \rightarrow \mathcal{T}^2$ $(g, [h_1], [h_2], [h_3]) \mapsto (g, [h_2], [h_1], [h_3]).$

何 ト ィヨ ト ィヨ ト

 299 Georgia

Grp is almost a CDC

 $T(G) = G \times$ something

御き メミメ メミメー

4 0 F

 $E = \Omega Q$

Generalised Cartesian Differential Categories (GCDC)

Definition (Cruttwell '18)

A $GCDC$ is the data of \cdot

- A cartesian category X ,
- For each object X in X , a commutative monoid object $L(X)$, such that :

 $LL(X) = L(X)$ $L(X \times Y) = L(X) \times L(Y)$,

• For each morphism $f : X \rightarrow Y$, a directional derivative :

 $D[f] : X \times L(X) \rightarrow L(Y)$,

 $\mathbf{A} \oplus \mathbf{A} \rightarrow \mathbf{A} \oplus \mathbf{A} \rightarrow \mathbf{B} \oplus \mathbf{A}$

 QQ

satisfying [GCD.1] to [GCD.7].

Generalised Cartesian Differential Categories (GCDC)

Definition (Cruttwell '18)

A $GCDC$ is the data of \cdot

- A cartesian category X ,
- For each object X in X , a commutative monoid object $L(X)$, such that :

 $LL(X) = L(X)$ $L(X \times Y) = L(X) \times L(Y)$,

• For each morphism $f : X \rightarrow Y$, a directional derivative :

 $D[f] : X \times L(X) \rightarrow L(Y)$,

EXTERNITY OF SACK

satisfying [GCD.1] to [GCD.7].

Remarks :

- No "left-additiveness",
- The linearisation L is not necessarily functorial.
- Equalities can be relaxed.

GCDCs vs Tangent categories

Proposition (Cruttwell, '18)

If X is a GCDC, then there is a tangent structure on X such that :

 $T(X) = X \times L(X),$ $T(f)(x, y) = (f(x), Df(x, y)),$ $p_X(x, y) = x$, $s_X(x, y, z) = (x, y + z)$, $z_X(x) = (x, 0)$, $l_X(x, y) = (x, 0, 0, y),$ $c_X(x, y, z, t) = (x, z, y, t)$

GCDCs vs Tangent categories

Proposition (Cruttwell, '18)

If X is a GCDC, then there is a tangent structure on X such that :

 $T(X) = X \times L(X),$ $T(f)(x, y) = (f(x), Df(x, y)),$

$$
p_X(x, y) = x, \t s_X(x, y, z) = (x, y + z), \t z_X(x) = (x, 0),
$$

$$
l_X(x, y) = (x, 0, 0, y), \t c_X(x, y, z, t) = (x, z, y, t)
$$

Definition

A **parallelisable object** in a tangent category X is an object X such that :

 $TX \cong X \times$ something

Parallelisable objects in X form a category Parall_{X} .

Theorem (JS promised me this !) $\text{Parall}_{\mathbb{X}}$ has a GCDC structure. 化重复 化重复 QQ

Sacha Ikonicoff joint with JS Lemay and Tim Van der Linden [Abelianisation and differential structures](#page-0-0)

A GCDC structure for groups

Consider :

$$
L(G) := Ab(G)
$$

$$
f: G \rightarrow H
$$

$$
D[f]: G \times Ab(G) \rightarrow Ab(H)
$$

$$
(g_1, [g_2]) \mapsto [f(g_2)]
$$

Theorem (I., Lemay, V.d.Linden)

 (Grp, L, D) is a GCDC.

이동 이 이동이다

Þ

A GCDC structure for groups

Consider :

$$
L(G) := Ab(G)
$$

$$
f: G \rightarrow H
$$

$$
D[f]: G \times Ab(G) \rightarrow Ab(H)
$$

$$
(g_1, [g_2]) \mapsto [f(g_2)]
$$

Theorem (I., Lemay, V.d.Linden)

 (Grp, L, D) is a GCDC.

Is "abelianisation" an example of linearisation in general ?

```
What is an "abelianisation" functor ?
```
重き メラメー

∍

 QQ

What did we use for groups ?

- Grp has finite products
- Ab is abelian Ab is semi-linear
- Ab is (strongly) idempotent and preserves products (strongly).

 299

Ε

医尿囊的

Definition ('60s)

A reflective subcategory of a category X is a full subcategory $\mathbb{Y} \longrightarrow \mathbb{X}$ with a left adjoint $\mathbb{Y} \xleftarrow{L} \mathbb{X}$ called the reflector.

A linear reflective subcategory of X is a reflective subcategory

 \mathbb{L}_{C} \perp **X** where $\mathbb L$ is semi-additive. L z

 QQ

Definition ('60s)

A reflective subcategory of a category X is a full subcategory $\mathbb{Y} \longrightarrow \mathbb{X}$ with a left adjoint $\mathbb{Y} \xleftarrow{L} \mathbb{X}$ called the reflector. A linear reflective subcategory of X is a reflective subcategory \mathbb{L}_{C} \perp **X** where $\mathbb L$ is semi-additive. L z

Remark : any object X in $\mathbb L$ is a commutative monoid for the "fold" map $X \oplus X \rightarrow X$ and the unit $(1_X, 0) : X \rightarrow X \oplus X$

化重变 化重变性

G.

 QQ

Exercise : L is strongly idempotent (Hint : the counit is a natural iso)

Unital categories

Definition (Bourne '96)

A category X is *unital* if it admits finite products and the maps :

$$
X \xrightarrow{(1_X,0)} X \times Y \xleftarrow{(0,1_Y)} Y
$$

are jointly strongly epic.

Definition (Kelly '60s ?)

A cospan $A \longrightarrow B \longleftarrow C$ is strongly jointly epic if :

Sacha Ikonicoff joint with JS Lemay and Tim Van der Linden **[Abelianisation and differential structures](#page-0-0)**

Linear reflective subcat. and Unital cat.

Idea : $L(X) \xrightarrow{L(1_X,0)} L(X \times Y) \xleftarrow{L(0,1_Y)} L(Y)$ is a coproduct $L(X) + L(Y)$.

A EXA EXA EXAMPLE

Abelianisation Linearisation gives a GCDC

ヨメ メヨメ

 Ω

Abelianisation Linearisation gives a GCDC

Theorem (I., Lemay, V.d.Linden)

Let X be a unital category and
$$
\mathbb{L}_{\mathbb{L}} \times
$$
 be a linear reflective
subcategory. Then, (X, L, D) is a GCDC, with $D[f] = L(f) \circ \pi_1$.

Examples : any semi-abelian category has a GCDC structure.

- \bullet Grp,
- non-unital rings, with : $L(R) = R/R^2$,
- Lie algebras, with $L(g) = g/[g, g]$,
- cocomutative Hopf algebras (in char. 0) with $L(H) = H/\langle \mu(a \otimes b) = \mu(b \otimes a) \rangle$

K Brand Brand

Georgia QQ

Future work : going the other way

Is there a tangent category $(\mathbb{X}, \mathcal{T})$ such that :

- Not all objects are parallelisable,
- Parallelisable objects $=$ Grp.
- Differentiable objects $=$ Ab,
- ... Is interesting?

Tentative : Completely Non-Abelian Rings (CNARs)

- \rightarrow Rings where $+$ is not commutative...
- \rightarrow Groups G with internal cross pairings $G \otimes G \rightarrow G$? Associative, or Lie-like ?

Does not work well so far.

ミメスミメー

 QQ

Thank you !

Sacha Ikonicoff joint with JS Lemay and Tim Van der Linden **[Abelianisation and differential structures](#page-0-0)**

지금에서 돈에 있

4 17 18

 \sim

 $E = \Omega Q$