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Cartesian Differential Categories : motivation

f ∈ Smooth(Rn,Rm)

(f1, . . . , fm) ∈ Smooth(Rn,R)×m

Df =
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Df : Rn × Rn → Rm

(x⃗ , y⃗) 7→ Df (x⃗ , y⃗) := Dx⃗ f (y⃗) =
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Cartesian Differential Categories : preliminaries

Definition (Blute, Cockett, Seely, ’09)

A left additive category is a category X where for all objects A,B,
X(A,B) is a commutative monoid and :

(f + g) ◦ h = f ◦ h + g ◦ h, 0 ◦ f = 0.

A morphism f in X is linear if, moreover :

f ◦ (g + h) = f ◦ g + f ◦ h, f ◦ 0 = 0.

Definition (Blute, Cockett, Seely, ’09)

A Cartesian left additive category is a left additive category equipped
with all finite product and where projection maps are linear.
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Cartesian Differential Categories : definition

Definition (Blute, Cockett, Seely, ’09)

A Cartesian Differential Category is a Cartesian left additive category
X equipped with a differential combinator of the form :

f : A → B
Df : A× A → B

Satisfying [CD.1] to [CD.7].

Ex : Smooth.
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Cartesian Differential Categories : axioms

[CD.1] : D is linear in f ,

[CD.2] : Df is linear in y⃗ ,

[CD.3] : D(IdX )(x⃗ ,−) = IdX ,
D(πi )(x⃗ ,−) = πi

A× B
π1

||

π2

""
A B

B1 A
foo g // B2

⟨f , g⟩ : A → B1 × B2

[CD.4] : D (⟨f , g⟩) = ⟨Df ,Dg⟩

[CD.5] : D(g ◦ f )(x⃗ , y⃗) = Dg(f (x⃗),Df (x⃗ , y⃗)) (Chain Rule !)

[CD.6] : D(Df )(x⃗ , 0, 0, y⃗) = Df (x⃗ , y⃗)

[CD.7] : D(Df )(x⃗ , y⃗ , z⃗ , t⃗) = D(Df )(x⃗ , z⃗ , y⃗ , t⃗)
(Mixed Partial derivatives commute)
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CDCs to Tangent categories

Proposition (Cockett, Cruttwell, ’14)

If X is a Cartesian differential category, then there is a tangent structure
on X such that :

T (X ) = X × X , T (f )(x , y) = (f (x),Df (x , y)),

pX (x , y) = x , sX (x , y , z) = (x , y + z), zX (x) = (x , 0),

lX (x , y) = (x , 0, 0, y), cX (x , y , z , t) = (x , z , y , t)

Definition (Cockett, Cruttwell, ’18)

A differential object in a tangent category X is an object X such that :

TX ∼= X × X

Differential objects in X form a category DiffX.
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Tangent categories to CDCs

Proposition (Cockett, Cruttwell, ’18)

DiffX comes naturally equipped with a CDC structure where :

f : A → B

A× A
T (f ) //

Df
$$

B × B

π2

��
B
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A tangent structure for groups :

Theorem (I., Lemay, V.d.Linden)

There is a tangent structure on Grp such that :

T : Grp → Grp G 7→ G × Ab(G ) f 7→ (f ,Ab(f )),

pG : T (G ) → G (g , [h]) 7→ g

sG : T2(G ) → T (G ) (g , [h1], [h2]) 7→ (g , [h1] + [h2]),

zG : G → T (G ) g 7→ (g , 0),

lG : T (G ) → T 2(G ) (g , [h]) 7→ (g , 0, 0, [h]),

cG : T 2(G ) → T 2(G ) (g , [h1], [h2], [h3]) 7→ (g , [h2], [h1], [h3]).
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Grp is almost a CDC

T (G ) = G × something
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Generalised Cartesian Differential Categories (GCDC)

Definition (Cruttwell ’18)

A GCDC is the data of :

• A cartesian category X,
• For each object X in X, a commutative monoid object L(X ), such

that :
LL(X ) = L(X ) L(X × Y ) = L(X )× L(Y ),

• For each morphism f : X → Y , a directional derivative :

D[f ] : X × L(X ) → L(Y ),

satisfying [GCD.1] to [GCD.7].

Remarks :

- No“left-additiveness”,

- The linearisation L is not necessarily functorial.

- Equalities can be relaxed.
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GCDCs vs Tangent categories

Proposition (Cruttwell, ’18)

If X is a GCDC, then there is a tangent structure on X such that :

T (X ) = X × L(X ), T (f )(x , y) = (f (x),Df (x , y)),

pX (x , y) = x , sX (x , y , z) = (x , y + z), zX (x) = (x , 0),

lX (x , y) = (x , 0, 0, y), cX (x , y , z , t) = (x , z , y , t)

Definition

A parallelisable object in a tangent category X is an object X such
that :

TX ∼= X × something

Parallelisable objects in X form a category ParallX.

Theorem (JS promised me this !)

ParallX has a GCDC structure.
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A GCDC structure for groups

Consider :
L(G ) := Ab(G )

f : G → H
D[f ] : G × Ab(G ) → Ab(H)

(g1, [g2]) 7→ [f (g2)]

Theorem (I., Lemay, V.d.Linden)

(Grp, L,D) is a GCDC.

Is “abelianisation”an example of linearisation in general ?

What is an“abelianisation” functor ?
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What did we use for groups ?

Ab � v ⊥ 55 Grp,

Ab
uu

where

• Grp has finite products

• Ab is abelian Ab is semi-linear

• Ab is (strongly) idempotent and preserves products (strongly).
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Reflective subcategories

Definition (’60s)

A reflective subcategory of a category X is a full subcategory

Y �
� // X with a left adjoint Y XLoo called the reflector.

A linear reflective subcategory of X is a reflective subcategory

L � r ⊥ ;; X
L

zz
where L is semi-additive.

Remark : any object X in L is a commutative monoid for the“fold”map
X ⊕ X → X and the unit (1X , 0) : X → X ⊕ X

Exercise : L is strongly idempotent (Hint : the counit is a natural iso)
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Unital categories

Definition (Bourne ’96)

A category X is unital if it admits finite products and the maps :

X
(1X ,0) // X × Y Y

(0,1Y )oo

are jointly strongly epic.

Definition (Kelly ’60s ?)

A cospan A // B Coo is strongly jointly epic if :

M

m

��

M

m

��
P with m monic ⇒ P

A

==

// B

OO

Coo

aa

B

OO ∃

ZZ
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Linear reflective subcat. and Unital cat.

Lemma

Let X be a unital category and L � r ⊥ ;; X
L

zz
be a linear reflective

subcategory. Then, L preserves products strongly.

Idea : L(X )
L(1X ,0)// L(X × Y ) L(Y )

L(0,1Y )oo is a coproduct L(X ) + L(Y ).
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Abelianisation Linearisation gives a GCDC

Theorem (I., Lemay, V.d.Linden)

Let X be a unital category and L � r ⊥ ;; X
L

zz
be a linear reflective

subcategory. Then, (X, L,D) is a GCDC, with D[f ] = L(f ) ◦ π1.

Examples : any semi-abelian category has a GCDC structure.

• Grp,

• non-unital rings, with : L(R) = R/R2,

• Lie algebras, with L(g) = g/[g, g],

• cocomutative Hopf algebras (in char. 0) with
L(H) = H/⟨µ(a⊗ b) = µ(b ⊗ a)⟩

Sacha Ikonicoff joint with JS Lemay and Tim Van der Linden Abelianisation and differential structures



Abelianisation Linearisation gives a GCDC

Theorem (I., Lemay, V.d.Linden)

Let X be a unital category and L � r ⊥ ;; X
L

zz
be a linear reflective

subcategory. Then, (X, L,D) is a GCDC, with D[f ] = L(f ) ◦ π1.

Examples : any semi-abelian category has a GCDC structure.

• Grp,

• non-unital rings, with : L(R) = R/R2,

• Lie algebras, with L(g) = g/[g, g],

• cocomutative Hopf algebras (in char. 0) with
L(H) = H/⟨µ(a⊗ b) = µ(b ⊗ a)⟩

Sacha Ikonicoff joint with JS Lemay and Tim Van der Linden Abelianisation and differential structures



Future work : going the other way

Is there a tangent category (X,T ) such that :

• Not all objects are parallelisable,

• Parallelisable objects = Grp,

• Differentiable objects = Ab,

• . . . Is interesting ?

Tentative : Completely Non-Abelian Rings (CNARs)
→ Rings where + is not commutative. . .
→ Groups G with internal cross pairings G ⊗ G → G ?

Associative, or Lie-like ?

Does not work well so far.
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Thank you !
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